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Abstract. The coarsening of domains of lamellar patterns in the presence of an additive noise
is studied in numerical simulations of the cell-dynamical-system model of the Swift–Hohenberg
equation. We demonstrate the noise-enhanced domain growth. The growth exponent of domain
size depends on the noise intensity, which implies a breakdown of universality.

Coarsening phenomena are ubiquitous in nature. A typical example is the dynamics of phase
separation in systems quenched from a high-temperature disordered state into an ordered two-
phase region [1]. A general consensus of many theoretical and experimental studies on these
systems is the scale-invariant morphology that develops at the late stages of the coarsening
process; the structure at different times is statistically similar and the spatial distribution of
domains is described by a single time-dependent length scale (the dynamic scaling hypothesis).
At the same time theuniversality hypothesishas been generally adopted that details of the
system should not affect universal quantities such as the growth exponent.

In this paper we extend this question to systems in which the ordered phase is a periodic
lamellar state. Rayleigh–B́enard (RB) convection is a canonical example of such systems.
When a horizontal layer of fluid is heated from below and driven far from equilibrium, it
undergoes a transition from a spatially and temporally homogeneous conduction state to a
convective state. The structure that emerges above the convective threshold in large aspect-
ratio systems is the stripes (convective rolls) of arbitrary orientation. The subsequent evolution
of the pattern involves the reorientation of rolls and elimination of defects to attain parallel
rolls of sizable extent. Other examples include diblock copolymers and chemically reactive
binary mixtures where competing interactions result in stable lamellar phases. Because of the
existence of the spatial period 2π/q0 of the ordered structure, the dynamics of phase-ordering
of the lamellar states is quite intriguing in comparison with the case of phase separation for
which q0 = 0, and has been under extensive investigation (mostly by numerical simulations)
[2–7]. Unfortunately, however, no successful theoretical formulation is yet available for the
problem. Thus disagreement has remained concerning the (intermediate) asymptotic growth
law of the domain coarsening.

There is also the question of noise effects on pattern-forming nonequilibrium systems.
For (q0 = 0) phase separating systems, fluctuation of thermal origin seems asymptotically
irrelevant in the scaling regime; temperature effects are controlled by a zero-temperature
fixed point [8]. The main effect of thermal noise then is only to roughen the domain walls,
and the approach to the asymptote is slower for stronger noise [9]. This is in accord with
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the intuitive image of noise we have developed from equilibrium thermodynamics that noise
induces disorder. However, we should be aware of the fact that sometimes the notion we
usually associate to internal noise (derived from the many microscopic degrees of freedom of
the system) can be seriously misleading. In fact we have recently witnessed counterintuitive
examples under certain circumstances. Archetypical examples are noise-induced phase
transition [10] and stochastic resonance [11]. The stochastic force associated with such effects
is known as external noise. Along different veins several noteworthy features within the context
of pattern formation have also been suggested. Namely, with noise added, (i) convective rolls
appear in RB systems in which a deterministic analysis predicts a homogeneous solution [12];
(ii) the characteristic size of spatial structure that emerges during a slow sweep of the bifurcation
parameter through its threshold increases (logarithmically) with the magnitude of added noise
[13]; (iii) it drives the system toward a preferred wave number of the patterned state which
depends only on the system parameters [14].

Simulations [2–7] have given various results for the growth exponent (α) of the domain
size of stripes, includingα = 1/2, 1/4 and 1/5. A general opinion in the recent literature
is that the scaling exponents are 1/5 and 1/4 under zero noise and finite noise, respectively,
leading to the possibility of a new universality class. The important question is then ‘is the
presence or absence of noise the main feature determining the universality class?’. However,
there is no systematic study to answer this question. The present study deals with this issue.

We study the influence of noise on the coarsening kinetics of the lamellar patterns by
numerical simulations. To be explicit we will treat a computationally efficient cell-dynamical-
system (CDS) version [15] of the Swift–Hohenberg (SH) model [16] that was originally
introduced to investigate the RB instability. (Although the SH model does not allow for precise
prediction of the convection system since it neglects non-Boussinesq effects and the mean-flow
effect as well, the model constitutes a paradigm of pattern formation outside of equilibrium,
exhibiting many features common to natural patterns [17]. In the following text, however,
we shall use hydrodynamic terms inherent in the convection system for convenience.) It is a
two-dimensional theory involving a real order parameter which describes the slow (spatial and
temporal) variation of the vertical component of the fluid velocity. It reads as

ψ(n, t + 1) = A tanhψ(n, t)− L[[ψ(n, t)]c]c +Bη(n, t) (1)

with [ψ ]c ≡ 〈〈ψ〉〉 − cψ , whereψ(n, t) is the order parameter in thenth ‘cell’ at time t . The
positive constantsA, L, c andB are parameters of our model,B being the noise amplitude.
The noise fieldη(n, t) is taken to be a random number, uniformly distributed in the interval
[−1, 1], assigned at each timet to each cell siten. The noise can have an internal (thermal) or
external origin with respect to the system under study. (We have also performed simulations in
which noise has a Gaussian white distribution. The result was quite insensitive to the choice.)
The operator〈〈〉〉 is the isotropic spatial average [18], and defined on the square lattice by
〈〈ψ〉〉 = (1/6)∑ψ(nearest neighbour cells) +(1/12)

∑
ψ(next-nearest-neighbour cells). In

this model the wave vector of the most unstable mode of the linear dispersion (with respect
to the conducting state) is given byqm = arccos[(3c − 1)/2]. For more details on the CDS
model (1) and its relation to the SH model, we refer the reader to [3] and [15].

We have performed the numerical simulation of equation (1) on a square lattice of
1024× 1024 cells with periodic boundary conditions with parametersA = 1.025,L = 0.8,
c = 0.7 at variable values ofB ranging from 0 to 0.3; the aspect ratio0 (system length versus
2π/q0) is therefore0 ∼ 160. The initial distribution of theψ ’s is specified by a random
uniform distribution in the range [−0.01, 0.01]. Each run is repeated with five different initial
configurations to average over.

We computed the circularly-averaged scattering functionS(q, t) defined byS(q, t) =
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Figure 1. The circularly-averaged scattering functionS(q, t) at time stept = 105 as a function of
the wave numberq. In (a) and (b),S(q, 105) is shown for the noise strengthB = 0.03 and 0.2,
corresponding to the ordered and disordered states, respectively. Theq is defined only for discrete
multiples of 2π/1024, andS(q, t) is in arbitrary units. Note the differences in axis scaling between
the two plots. The data (open circles) were hardened using transformationψ → sgnψ to remove
any effect due to the finiteness of the ratio of the thickness of domain walls to the domain size. The
solid curve is the best fit to the data using a squared Lorentzian (a) or a Lorentzian form (b).

〈ψ(q, t)ψ∗(q, t)〉 with ψ(q, t) being the Fourier transform of the order parameter, and the
orientation of the wave vectorq was averaged over. Time evolution ofS(q, t) exhibits
narrowing of the scattering profile and increase of the peak intensity at the positionq ≈
qm(= 0.99). In figures 1(a) and 1(b) the scattering functionsS(q, t) are shown forB = 0.03
and 0.2, respectively. We fittedS(q, t) for B 6 0.07 to a squared Lorentzian form [5, 6]

S(q, t) = a2/[(q2 − b)2 + c2]2 (2)

and extracted the half width at half maximum̀−1(t), and the peak heightSp(t). (We have
also performed a fit to a Gaussian form and this made no difference to our results.) For the
stronger noise strengthB > 0.07, the squared Lorentzian fit shows systematic deviation in the
peak and tail regions, and a Lorentzian fitS(q, t) = a/[(q2 − b)2 + c2] was a significantly
better fit, suggesting a disordered state in this parameter range (see below). The value of the
peak position (q = √b) determined from the fitting could not be distinguished fromqm within
numerical uncertainty. The length̀(t) measured in this way is displayed in figure 2. As
seen from the figure,̀(t) at the late stage of coarsening is one order of magnitude smaller
than the system length. Hence we believe that the finite size effects are negligible in our
simulation. The characteristic length scales of the late stage are well fitted by a power law
` ∝ tα over more than two decades in time. This same scaling was found for the peak height,
Sp(t) ∝ tα (as seen in the inset to figure 2(a)), confirming the scaling form ofS(q, t) [2, 7, 6]:
S(q, t) = `(t)f ((q − qm)`(t)), wheref (x) is a scaling function. There are two striking
features to be noticed in figure 2. First, we find that at low noise strengths (figure 2(a)) adding
noise speeds up the coarsening as revealed by the increasing slopes of the curve withB. This
behavior is also reflected in the pattern as seen in figure 3, which depicts configurations at
t = 105. One sees that a higher value ofB (figure 3(b)) results in a larger average domain
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Figure 2. Time evolution of the half width at half maximum̀−1(t) of the scattering function for
different noise strengths; (a)B = 0.07, 0.05, 0.03, 0, 0.01, and (b)B = 0.08, 0.09, 0.1, 0.2, 0.3,
from the right-hand top to bottom, respectively. In the inset to (a), time evolution of`(t) (open
circles) and the peak intensitySp(t) (filled circles) of the scattering function forB = 0.03 is shown.

size. Second, for the stronger noise a steady state was rapidly reached (figure 2(b)). The
state achieved is characterized by the small range of spatial correlation, which is only of
the order of the wavelength of the rolls (∼ 2π/qm). The qualitative difference between the
low (ordered) and high noise-strength (disordered) states is also apparent in the one-point
distribution functionρ(ψ) displayed in figure 4(a). As a matter of fact, Elderet al [2] have
already found this disordered state in whichρ is single-peaked atψ = 0, and called it the
isotropic phase. The use of this term (drawn from analogy with liquid crystals) is somewhat
misleading, however, since we find (figure 1(b)) the scattering functionS(q, t) for this state is
still peaked atq ≈ qm.

The growth exponentα is plotted as a function of the noise strengthB in figure 4(b). It is



Letter to the Editor L151

Figure 3. Flow patterns achieved at 105 time step forB = 0 (a) and 0.06 (b) with the same initial
condition. The bright regions denote negative values of the fieldψ while the dark ones positiveψ .
Each figure exhibits a central 2562 portion of the 10242 lattice result.

Figure 4. (a) The normalized one-point distribution functionρ(ψ) for various noise intensities (B)
at t = 105. (b) Growth exponent (α) versus noise strength (B). The results plotted were obtained
using either̀ (t) (triangles) andSp(t) (squares) from hardened data or`(t) (diamonds) andSp(t)
(circles) from the data without hardening. Also shown by daggers is the position of the peak in
ρ(ψ) at t = 105.

clear that there is a dependence ofα on the value ofB. Namely,α first becomes progressively
larger for higher values ofB, and the value ofα drops rather abruptly asB increases further.
In the same figure, we have also indicated that in the same transition region where the sharp
decrease of the exponent occurs, the position of the peak inρ(ψ) also moves towardψ = 0.
We regard our result as being strongly suggestive of a breakdown of the universality hypothesis.
At the same time, it clearly describes the enhancement of pattern coarsening at an optimum
noise level. The latter characteristic is quite akin to the well-known feature of the stochastic
resonance phenomena. (Of course, this analogy is only superficial; the characteristics is due to
the existence of a phase transition in our system, not the resonance effect.) In this connection
it should be worth adding that, by injection of noise into the time-periodically modulated SH
model, Vilar and Rub́ı [19] have demonstrated the appearance of a maximum in the output (the
Nusselt number in this case) signal-to-noise ratio at an optimal dose of noise.
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The noised-induced cooperative behavior seems to be at its maximum in the vicinity of the
transition from order (with well-defined domains) to disorder. This bears a close resemblance
to a notion (known as fitness landscape in biological evolution [20]) of the complex adaptive
system. It has been proposed that the system functions at the transition between order and
disorder. Deep in the ordered regime, the system would be likely to get stuck because of rigid
and conflicting constraints and have no opportunity to reach greater fitness. If it is jiggling
around in a random way, that will give a chance to escape from local maxima of fitness and
find much higher fitness peaks nearby. Deep in the disordered regime, however, there is too
much jiggling and the above strategy will cease to work.

To sum up, we have demonstrated, using the CDS version of SH equation, that the random
noise remains relevant in the scaling regime, where the characteristic coarsening length scale
exhibits power-law dynamics but the growth exponent depends on the noise level. We believe
that this breakdown of universality applies to lamellar ordering in general, and we hope we
can report some theoretical analysis of this point in the near future.

YS thanks S Puri for informative conversation.
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